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Abstract 

The spontaneous generation of oscillations in circuits with iron-core coils is treated with reference to an 
analogous mechanical problem, in that a periodic variation of the magnetizing current in iron-cored coils 
leads to a proportionately varying inductance. 
 
 
It has been known for quite a while that, under certain conditions, oscillating circuits containing a 
closed iron-core coil, which is driven by an exterior sinusoidal EMF, can self-excite additional 
oscillations whose frequency is not necessarily equal to that of the exterior EMF nor a harmonic 
of it. K. Heegner1 has experimentally investigated the establishment of such well-known 
oscillations and, with the aid of energy considerations, has also obtained theoretically determined 
expressions (especially concerning the existing frequency relations).      
 
In this publication it will be demonstrated that the most important of these phenomena (that is, 
self-excitation) also permits a variant of Heegner’s representation. I was led to this through Lord 
Rayleigh’s2 work on mechanics in which an example of frequency splitting is treated. Because of 
its simplicity, it seems to me that the application of this method to our problem is not without 
significance.       
 
The gist of Rayleigh’s work should be briefly given here since it facilitates an understanding of 
the electromagnetic analogy: 
 
A taught chord is attached to the end of a (tuning) fork’s prong, which oscillates at frequency ωo 
in the direction of the chord. Consequently, the tension of the chord experiences a periodic 
variation at the same frequency. Initially, there is no cause present for transversal vibrations. 
However, under certain conditions, the chord actually executes powerful transverse oscillations3 
at a frequency of ωo/2. For the explanation of the system’s transverse oscillation phenomenon, 
Rayleigh formed the equationi 
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*  Translated by J.F. Corum, National Electrodynamics, July 31, 2007. 
1  K. Heegner, "Self-Excited Phenomena in Systems with Distorted Superposition." Zeitschr. für Phys., 

Vol. 29, p. 91, 1924; and  Vol. 33, p. 85, 1925. Ref. Jahrbuch für drahtlosen Telegraphie und Telephonie 
(Zeitschrift für Hochfrequenztechnik), Vol. 27, p. 30,1926. 

2  “On Maintained Oscillations,” Phil. Mag., Vol. 15, p. 229, 1883; also see Rayleigh, Theory of Sound, 
Vol. 1, p. 82, London, 1926. 

3  The previously cited reference gives a series of further examples from mechanics. In this connection, also 
see: B. van der Pol, "Stabiliseering door kleine Trillingen," Physica, Nederl. Tijdschrift v. Natuurkde, 5, 
p. 157, 1925. 
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and pointed out that, by a specific choice of the constants α, β, n2, this differential equation, 
possesses a particular integral 
 









−•= φ

ω
tAu o

2
sin  .      

 
The electromagnetic analogy to this mechanical problem is usually formed as an oscillating 
circuit whose capacity or inductance varies periodically in time. The latter is the case if the circuit 
contains an iron-cored coil that is magnetized by an alternating current. By this means the 
inductance of the coil undergoes a periodic variation (see below) of the same frequency as the 
magnetizing alternating current for the case that direct current is additionally superimposed, but 
of double frequency if the direct current component is absent.     
 
It will now be shown that self-excitation in these kinds of systems, which are analogous to 
mechanical examples, can be explained from the periodicity of the self-induction.  
 
The following section will next present the self-induction of an iron-cored coil as a periodic 
function of time. In the subsequent sections, self-excitations in simple oscillating circuits with 
iron-cored coils (with and without DC bias-magnetization) will be treated, and, finally, an 
extension of Rayleigh’s formulation leads to a description of coupled systems with iron-cored 
coils. 
 
 

 

 
 
 
    
 
 
 
 

Figure 1.  Oscillation circuit with an iron-cored coil and DC bias-magnetization. 

 
1. An Iron-cored Coil as a Periodically Varying Inductance. 

 
Consider a coil with a closed iron-core, with magnetic flux Φe that has magnetic bias by DC 
current ig, in an oscillation circuit with capacitance C1. Let the inductance be L1 and the 
dissipation resistance be R1. (Figure 1) Let an exterior sinusoidal electromotive force e, of 
frequency ωo be applied to the circuit. Therefore, the differential equation for the circuit is  
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If the iron-free inductance of L1 is sufficiently great, the higher harmonics of i1 can be neglected 
in comparison to the fundamental oscillation, and Equation (1) possesses a stationary oscillation 
as a solution: 
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as is commonly attained if an inductance Le for the iron-cored coil, defined according to Schunck-
Zenneck,4 is introduced.  
 
According to the method of small vibrations, an additional current i should now be superposed on 
the current i1 with the requirement that i<<i1. Because of this assumption, in the first 
approximation the differential equation for the varying current is: 
 










=++++

+
•+







 Φ
•+

+
•

Φ








 Φ
•+

+
•

Φ
=

+
•

+
+Φ

∫ etdii
C

iiR

td
iid

L
id

id
td

di
td

iid
id

id
id

id
td

di
td

iid
id

id
td

iid
iid

iid

ee

ee

e

)(1)(

)()()()(

,
)()(

)(
)(

)(
)(

)(

1
1

11

1
1

1

11

1

1

1

11

1

1

1

1

1

   (2) 

 
Therefore, the equation for the superposed oscillations is: 
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functions of time,5 and can, as shown below, be represented by the following Fourier Series: 
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In these equations, Lo and kn are functions of the amplitude J1 of the magnetizing alternating 
current and of the superposed direct current, ig. 
 
According to Rayleigh, under certain conditions, owing to the periodicity of the coefficients, 
Equation (3) will possesses stationary solutions for i, which produce the original superposed 
solution of Equation (1) for i1 and the consequent self-excitation of our system. For this 
investigation, the coefficients of the series in Equation (5) are to be calculated as functions of J1 
and ig: 
 
                                                 
4  This Jahrbuch, Vol. 19, p. 117, 1922. [See Endnote Reference ii.] 
5  In Equation (3),  dΦe/di1 has the meaning of a periodically varying self-induction. 
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a) Lo and kn in the case of pure alternating current magnetization (ig = 0). 
 
As usual, one may employ the formulation of Dreyfussii for the analytical representation of the 
magnetization curve of iron: 
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where, as above, i1 = J1 sin ωot . So, first of all we have: 
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From this it follows that  dΦe/di1 possesses a fundamental frequency of 2ωo , and therefore double 
the generator frequency. Consequently, k1 = k3 = k5 = 0 in Equations (4) and (5). Furthermore, the 
coefficients of Equations (4) and (5) produce the following: 
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From Equation (9) there follows 
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The sin terms do not emerge in the Fourier series (since ig = 0). Therefore, we obtain the result: 
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and consequently 
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L 42 ,,  are plotted in Figure 2 as functions of q and J1. 

 
The value of the inductance Le of the iron-cored coil, defined according to Schunk-Zenneck,iii is 
obtained from Lo and k2:  ωo Le J1 cos ωot is the fundamental oscillation of the coil voltage if the 

current in the coil is i1 = J1 sin ωot. Since the total voltage across the coil is 
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By comparing expressions (8) and (9) with Equation (13) one obtains: 

 

2
2kLL oe +=    (see Figure 2)  (14) 

 
(L’ + Lm) is the maximum value of Le and of Lo. 
 
 
 
 
 
 
    
 
 
 
 
 
 

 

 

Figure 2. The first coefficients of the Fourier Series for dΦe/di1 in an iron-core, without DC 
bias-magnetization, as a function of the amplitude of the magnetizing sinusoidal AC.  

 
 
b) Lo and kn in the case of DC bias-magnetization (ig ≠ 0). 
For the case of DC bias-magnetization, it must be confessed that the dependence of field strength 
and flux in iron is substantially more complicated, since they are rendered through the 
formulation of Equation (6). Here, an analytical calculation of the coefficients becomes specified 
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by Equation (4). Nevertheless, qualitative assertions can be made without the assumption of a 
specific magnetization curve:    
 
1. In the presence of bias-magnetization, the fundamental frequency of the function dΦe/di1 is 
equal to the generator frequency ωo ; then here, in contrast to being asymmetric 

 
  ( ) ( )11 iiii gege −Φ−≠+Φ    

 
the quantity dΦe/di1 can therefore be developed in the series   
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[The terms with cos (2n – 1)ωot  and sin 2nωot  (n = 1, 2, . . . ) are neglected; then, in the case of 
the superposition of DC and sinusoidal AC (i1 = J1 sin ωot), the voltage of an iron coil can be 
represented by the following series6 (neglecting hysteressis and AC breakdown): 
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which follows immediately from the ingredients of Equation (15).] 
 
2.  Here, for the first time, the interesting new coefficients k1, k3, … emerge from Equation (15), 
as is easily seen. They are zero if ig = 0 or J1 = 0 (also see), or if ig =  ∞ or J1 = ∞. For that reason, 
it is to be expected that the values of k1, k3, … pass through maxima for the case of constant ig 
and variable J1 as well as for variable ig and constant J1. 
 
II. Spontaneous Self-Excitation of Oscillations at the Generator Frequency and 
Their Integral Multiples. 

(Iron-core coils with pure AC magnetization.) 
 
 
 
 
 
 
 
 
 

F
 

                            
6  See: R. Strigel, thi
 

 
 
 

igure 3.  Double core connection without superposed DC. 

                     
s Jahrbuch, Vol. 29, p. 10, 1927. 
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Clearly, as one contemplates the circuit diagram shown in Figure 1, one recognizes in the double-
core circuit (Figure 3), already employed by K. Heegner,7 the essence of the self-excitation 
phenomena: 2 equivalent closed iron transformers (let the magnetic flux of each transformer be 
½Φe) have series-wired primaries connected to a generator at frequency ωo through an arbitrary, 
very large choke coil, L1. Its secondary windings are interconnected in opposition through an 
oscillation circuit (L, C, R). By this, a periodic change in the inductance in the secondary circuit 
is, accordingly, achieved at the frequency of the primary current, i1 = J1 sin ωot , while the voltage 
induced by the primary current is counteracted.    
 
From section I, Equations (3) and (11), if the series for dΦe/di1 is truncated after the second term, 
the differential equation for the current in the secondary circuit is  
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According to Rayleigh, this equation possesses the particular integral  
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assuming that L is sufficiently large that the harmonics of i can be neglected, and, furthermore,  
that the following tuning conditions of the secondary are satisfied.  
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(The inductance of the primary is chosen to be so large that the reaction in the primary to the 
oscillations in L, C, R can be neglected.) 
 
Equations (3a) and (3b) result from inserting Equation (2) into Equation (1) and asserting the 
following: self-excited oscillations commence, in the secondary of the circuit connection shown 

in Figure 3, at the generator frequency, if (a) 
C

L
o

o ω
ω 1

=  (assuming Lo<<L), and if (b) the 

energy condition, Equation (3b), is satisfied. Accordingly, the oscillations are only possible if 

2
2k

R oω≤       (sin 2φ < 0).  From the relationship of k2 to the amplitude of the magnetization 

current, J1, depicted in Figure 2, it is to be concluded that oscillations in the secondary, below as 
well as above certain values of J1, cannot be maintained.  
 
If the development of section I Equation (11) is truncated after the first three terms, then the 
differential equation for the secondary current reads: 

                                                 
7  Zeitschrift für Physik, Vol. 33, p. 85 and following, 1925. 
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with the particular integral8 
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provided these conditions are met: 
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According to this, an octave (doubling) of generator oscillation is excited when the secondary 
circuit is tuned approximately to the frequency 2ωo. Since, from Figure 2, k4 , like k2 , is a 
function of the amplitude of the magnetization current J1, it follows that Equation (6) can, again, 
be fulfilled only within a specific range of J1.       
 
Finally, if the entire series from section I Equation (11) is inserted into the differential equation 
for the secondary current, then, in the same manner, there result the conditions for the 
establishment of an oscillation in the secondary circuit whose frequency is any even or odd 
integral multiple of the generator frequency.   
 
 
III. Spontaneous Self-Excitation of Oscillations at Half the Generator Frequency 
and Their Integral Multiples. 

(Iron-core coils with AC and DC magnetization.) 
 
The circuit configuration shown in Figure 4 differs from the similar one in Figure 3 only in that a 
third winding, in which a DC current flows, is arranged on the iron core. According to Ib the 
series 
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is valid for the time-dependence of the function dΦe/di1. The variation of the inductance of the 
secondary circuit has the same period as the current of the generator circuit, i1 = J1 sin ωot. 
 
The differential equation for the current in the secondary circuit is, therefore, 

                                                 
8  As usual, in the following it is assumed that L is sufficiently large, so that the Fourier series for i 

produces a term that predominates against all others.   
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Figure 4. Double core connection with DC superposition. 

 
Under the same presuppositions as in the previous section it follows from this equation that an 
oscillation is established in the secondary circuit at half the generator frequency (ωo/2), or an 
integral multiple of it (nωo/2), if the following stipulation equations are satisfied: 
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that is, when the L, C, R circuit is tuned approximately to the frequency nωo/2 and the dissipation 
resistance satisfies the requirement: 
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(For n = 1 [frequency halving] the analogy with the mechanical problem mentioned in the 
introduction is complete.) 
 
 

Experiments for Sections II and III. 
 
The Oscillogram shown in Figure 5iv is an example of the self-excited oscillations treated in 
Section II: the well-known frequency doubling of iron cores having no bias-magnetization. The 
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circuit connection was that of Figure 3; the generator frequency was ωo = 2π·1000 sec-1; the 
secondary circuit (without an iron core) was tuned a little higher than 2ωo.   
 

 
 
 
 
 
 
 
 
 
 

Figure 5.   Frequency doubling with the double core connection. The amplitude of the 
magnetization current, i1, gradually increased during the recording.  

 
 
 
 

 
 
 
 
 
 
 

 

Figure 6.  Likewise for frequency-halving. 

 
 
The generator voltage, and therefore the amplitude J1 of the magnetizing current i1, gradually 
increased during the recording. Certain values of the amplitude (and therewith of k2, compare 
Figure 2) established oscillations i in the initially dead circuit L, C, R at the frequency 2ωo = 
2π·2000 sec-1, the latter vanished again at yet higher values of J1 (in harmony with the attached 
discussion of Equation (6) in section II).  
 
As an example of section III, the oscillogram of Figure 6 shows the familiar frequency-halving 
for iron cores with bias-magnetization. The circuit is shown in Figure 4. The three windings have 
an equal number of turns (ig = 2 amps). The L, C, R circuit was approximately tuned to the 
frequency of ½ ωo  (ωo = 2π·1000 sec-1). As in the previous example, oscillations i appear in the 
secondary circuit (this time at half the generator frequency) only within a certain region of the 
amplitude J1 of the magnetization current i1. This is also in agreement with the theory (compare 
Equation (3) of Section II) since, according to the considerations of section I for a constant DC 
current ig, k1 must possess a similar course as k2 in Figure 2.      
 
According to all these experiments, the tuning of the generator circuit is unimportant as long as  
i<<i1. In our case, a very large self-inductance is connected between the generator and the 
primary of the transformers. 
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IV.  Self-Excitation of Independent Oscillations in Coupled Systems. 
 
In addition to the self-excited phenomena that were treated in the previous sections for the case of 
two coupled oscillation circuits, one of which contains an iron-cored coil, two oscillations with 
the frequencies ω1 and ω2  (ω1 ≠ ω2 ≠ ωo) emerge, by which the resulting current amplitudes are 
developed under pendulum conditions.9,v       
 
Here, an extension of Rayleigh’s formulation, derived from the periodicity of the self-induction, 
also makes possible the establishment of these superposed oscillations (in fact the oscillations for 
which, according to Heegner, the frequency relation  nωo =  ω1 + ω2 ,  for n = 1, 2, …, exists). 
The important practical case, 2ωo =  ω1 + ω2  (an iron-core with pure AC magnetization), will be 
treated in the following example (see Figure 7). 

 
Figure 7.   Coupled circuit which, under certain conditions, can excite oscillations given by 

the frequency relation 2ωo =  ω1 + ω2 . 

 
 
For this circuit connection the requirement again exists that the iron-free inductances are 
supposed to be large in comparison to the iron-cored coil.     
 
Let the generator voltage be: e = E sin (ωot – ψ). 
 
The equations of the system: 
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9  In addition to the work of Heegner, see: Plendl, Sammer, Zenneck, this journal, Vol. 26, p. 104, 1925. 
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possess, first of all, the solution i1 = J1 sin ωot, which, again, is thus obtained for the case that the 
iron-core coil is replaced by the Schunck-Zenneck defined inductance, Le. As with the uncoupled 
system, we arrive from Equation (1) at the equations of the self-excited oscillations of this 
system, in that the small oscillations of the primary current i (i<<ig) are superposed on the 
secondary current i’. The result is: 
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If the expression for 
1id

d eΦ  in section I Equation (11) is truncated after the second term, and then 

is placed into the previous equation, one obtains   
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Equation (2) will be satisfied by the expression: 
 
 

( ) ( ){ }2211 sinsin φωφω −+−•= ttAi     (4) 
 
 
(therefore, by two stationary oscillations at different frequencies) under the following 
conditions:10  
 

                                                 
10 Small damping is presupposed in b2 and d2. - Xω is the reactance of the system referred to the primary 

circuit, without an iron coil. Rω is the loss resistance referred to the primary circuit of the like system (for 
frequency ω). 
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Equations (5, a-e) immediately result by the insertion of Equation (4) into Equation (2). 
  
The flow of secondary current follows immediately from Equation (2b) if the expression given by 
Equation (4) for i is inserted into it. 
 
Discussion of Equation (5): 

1. The Xn quantities on the left sides of Equations (5b) and (5c) represent the reactance of 
the system without an iron coil referred to the primary circuit for frequencies ω1 and ω2, 
respectively. By assumption, when the iron-cored coil is small in comparison to the iron–
free coil it should follow that ω1 and ω2 are approximately the natural or eigenfrequencies 
of the system without the iron coil; therefore the generator must possess one frequency, 
which lies in the middle between these eigenfrequencies. 

2. From (1) it follows that the frequency of the beats, which result from these self-excited 
oscillations (swings of current amplitudes), must be brought into harmony with 
experience, the tighter the coupling between both circuits the higher the beat frequency 
must be. 

3. The energy balance of the system is contained in Equations (5.d, e). First of all, they 

result in amplitude-ratios of both self-excited oscillations:  
1

22

2

1

ω
ω

ω

ω
•=

R

R
a  (in 

agreement with Heegner). Furthermore, it follows from this that (analogous to uncoupled 
systems) the oscillations ω1 and ω2 cannot be maintained below certain values of the 

parameter k2 , 







••<

2
2

2
21

ωω
R

a
k , that is, with regard to the dependence rendered in 

Figure 2,  k2 = f(J1), ( in accordance with experiments),11 the oscillations of ω1 and ω2 
vanish above and below certain vales of the magnetization current, J1.  

                                                 
11  Plendl, Sammer, Zenneck, this Jahrbuch, Vol. 26, p. 104, 1925. 
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Figure 8.   Example of a voltage-current characteristic for the coupled-circuit connection 

shown in Fig. 7.  The region of self-excitation is dotted.  

 
 
 
 

4. Finally, it follows from the previously developed Equations (1) and (2) that, for the 
establishment of self-excited oscillations, it is insignificant whether the generator lies in 
the primary circuit or the secondary circuit of Figure 7, assuming that the generator 
voltage is adjusted so that the amplitude of the magnetization, J1, is the same value in 
both cases.  

 
This latter point should be illustrated with a few brief experiments: 

 
 

The curves in Figure 8 are taken from a similar circuit that Plendl, Sammer, and Zenneck12 have 
used. The iron coil here was placed in the secondary and, because of that, possesses the 
characteristic shape in which the generator current jumps backward when increasing the generator 
voltage from smaller values. At certain generator frequencies these jump phenomena are 
superposed on the above-mentioned beats.13 (The dotted parts of the curves.) (Plendl, Sammer, 
and Zenneck trace these well-known swings, which are connected with the jumps of the 
magnetization current J1, back to the sudden variation of the reaction of the secondary on the 
primary.)  
 
 

                                                 
12 Loc cit. 
13 Analogous to the beats shown in oscillogram (10). 
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Figure 9.  The circuit and generator frequencies are the same as in Fig. 8, nevertheless, the 
generator lies in another part of the hookup. 

 
 
 
The trajectories taken in the curves of Figure 9 are completely identical to the trajectories of 
Figure 8. The circuit differs from the previous one only in that the generator is directly connected 
to the windings of the iron coil. The reaction of the present secondary circuit on the generator is 
naturally independent of the current amplitude and can usually be described by a constant 
auxiliary impedance in the generator circuit. Therefore, it is to be expected that the current-
voltage characteristic of the generator (see Figure 9) does not differ from that of a simple 
oscillation circuit with an iron coil. As our theory demands, it appears that the equal beats (dotted 
parts of the curves) are actually only the case for identical values of magnetization current J1 and 
identical generator frequencies in the circuits of Figures 8 and 9. (An explanation for these 
swings, which return on the characteristic of the effective values, seems not to be possible for the 
latter circuits, since these kinds of swings with iron cores do not occur in simple harmonic 
motion.vi) 
 
 
 
 
Finally, oscillogram (10) shows that the jump phenomena can occur completely independent of 
pendulums. The circuit was the same as in Figure 8 except the coupling was a little tighter. 
During the photographic exposure, the generator-voltage was brought up from smaller to higher 
values: next the normal jump of current appeared, and after further increasing the voltage to 
higher values (and thereby J1) beats appeared, which again extinguished for yet greater values of 
magnetization current. 
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Figure 10.   Self-excitation in the circuit of Fig. 7. During the photograph the amplitude of 
the generator voltage gradually increased. [ Kippen = jump; Selbsterregung = 
self-excited] 

 
 

Conclusions. 
The foregoing work has demonstrated the fact that, in first approximation, self-excited 
oscillations in circuits with iron-cored coils are the same as those that occur in circuits that 
possess coils whose inductance is varied periodically by a mechanical device instead of 

possessing iron coils. (In place of  
1id

d eΦ   in Section I, Equation (3) there is an L(t).)   

 
The foregoing theory makes no assumption about the amplitudes of the self-excited oscillations. 
(In Equation (2) of section II, the quantities A, etc., are arbitrary constants of integration.) The 
basis for this rests on the fact that, as Rayleigh has already emphasized, the effect of the resulting 
oscillations on the coefficients in differential equation (3) of section I was not considered. (It was 
assumed that i<<i1.) Furthermore, on the same basis, the theory of non-independent self-
excitation is impractical in the form communicated by K. Heegner.    
 
Let me express my deepest gratitude to Herr Councilor Zenneck for the stimulating interest that 
he has taken in this work. 
  

Summary. 
In the foregoing work an analytical presentation of K. Heegner’s generally coherent description 
of stationary self-excitation in oscillation circuits with iron-cored coils was traced back to a well-
known form from mechanics: 
 
With the help of the method of small oscillations it was shown, above all, that, for the case of 
sinusoidal magnetization currents, the iron coils in an oscillation circuit whose self-excitations 
were investigated, can be replaced by a periodically varying inductance. The fundamental 
frequency of this inductance variation is, consequently, 
 

1. Equal to double the frequency of the generator (in the case of pure AC magnetization).  
2. Equal the generator frequency (in the case of DC plus AC magnetization).  

 
The amplitudes of the fundamental and harmonic oscillations of these periodic inductance 
variations are functions the effective values of the magnetization current.  
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For uncoupled systems, this formulation leads to a well-known differential equation, whose 
solution (for a certain choice of coefficients), according to Rayleigh, possesses stationary 
oscillations at a frequency equal to half the frequency of the inductance variation or to an integer 
multiple of it. That is to say, in Case 1 the self-excitations superposed on the magnetizing current 
possess a frequency equal to the generator frequency, and in case 2 a frequency equal to half the 
generator frequency or an integer multiple of it.  
 
The equations of constraint for the establishment of self-excitation are easy to derive and result in 
quantitative statements concerning the necessary tuning of the system and amplitudes of the 
magnetizing currents. 
 
In closing, an example was shown that, in a similar manner, could derive the requirements which 
exist for the establishment of self-excitations to appear in the case of coupled systems. (Swings of 
current amplitudes.) 
 
Physics Institute at the Technical College of Munich. 
(Submitted: 20 April 1929.)       
 
 
 
 
Comments and References Added by Translator  
                                                 
i  As is pointed out by many authors (see Cunningham, Nonlinear Analysis, 1958, p. 278, for example) 

Rayleigh’s expression may be recast into Mathieu’s equation by the following procedure: 

1.  Rayleigh’s expression:      0sin22
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5. By making these changes, the differential equation becomes 
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7. The resulting representation has now recast Rayleigh’s expression into the form of Mathieu’s 

Equation: 
 

( ) 02cos2
2

2
=−+ yzqa

zd
yd

     . 

 
ii  Dreyfuss, L., Electrotechnik und Maschinenbau, 1911. (See: N. Minorsky, Nonlinear Oscillations, Van 

Nostrand, 1962,  p. 64; A.A. Andronov, A.A. Vitt and S.E. Khaikin, Theory of Oscillators, Dover, 
1987, pp. 119-112.) Also see Dreyfuss, L., Arch. fur Electrotechn., Vol. 2, 1913, p. 343.   

iii  Schunk, H., and J. Zenneck, “Uber Schwingungskreise mit Eisenkernspulen, (On Oscillation Circuits 
with Iron Coils)” Jahrbuch der drahtlosen Telegraphie (Zeitschrift für Hochfrequenztechnik),Vol. 19, 
1920, p. 170. 

iv  The oscillogram figures are high-resolution scans of first generation Xerox copies of the journal 
microfilm, and witness to the tragic consequence of latter 20th century “library science”! 

v  For the transient case for linear coupled coils, compare the analyses of:  
a. Page, L., and N.I. Adams, Principles of Electricity, van Nostrand, 1931, pp. 504-511. (Page 

and Adams also treat the driven case, pp. 519-525.)  
b. Smythe, W.R., Static and Dynamic Electricity, McGraw-Hill, 2nd edition, 1950, pp. 340-346. 

(Note the error in Equation (14) on p. 345.) 
c. Skilling, H.H., Transients in Electric Circuits, McGraw-Hill, 2nd edition, 1952, pp. 220-230.  

vi  The text reads “Schw.-Kr.”, which is a German abbreviation, used only once in the text, and for which 
no translation was found. Perhaps it is “Schwingungen Kraften” (oscillating forces). We assume it is 
probably equivalent to the english “SHM” (Simple Harmonic Motion). 
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